Effects of calcium ion incorporation on bone healing of Ti6Al4V alloy implants in rabbit tibiae.
نویسندگان
چکیده
The biocompatibility of calcium ion (Ca)-incorporated Ti6Al4V alloy implants, produced by hydrothermal treatment using a Ca-containing solution, was investigated. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, Auger electron spectroscopy, and stylus profilometry. The viability of MC3T3-E1 cells on Ca-incorporated machined Ti6Al4V surfaces with different oxide thicknesses was compared with that on untreated machined Ti6Al4V surfaces with MTT assay. The osteoconductivity of the Ca-incorporated Ti6Al4V implants was evaluated by removal torque testing and histomorphometric analysis after 6 weeks of implantation in rabbit tibiae. Our results show that hydrothermal treatment with a Ca-containing solution produced a crystalline CaTiO(3) layer on Ti6Al4V surfaces, and calcium ions were gradually incorporated throughout the oxide layer. After immersion in Hank's balanced salt solution, a considerable apatite deposition was observed on all surfaces of the Ca-incorporated samples. Significant increases in cell viability (p<0.001), removal torque forces, and bone-to-implant contact values (p<0.05) were observed for Ca-incorporated Ti6Al4V implants compared with those for untreated Ti6Al4V implants.
منابع مشابه
A Study on the Effects of Modulation of Intracellular Calcium on Excisional Wound Healing in Rabbit
An in vitro study on the role of intracellular calcium ions in healing of excisional wound in rabbit was undertaken. We employed two drugs namely, glibenclamide and nitroglycerin that are topically applied in vivo to modulate the activity of intracellular calcium. Our model consisted of a 15 ´ 15 mm excisional wound. Seven groups of New Zealand rabbits were used. The first three groups served a...
متن کاملMorphological studies on machined implants of commercially pure titanium and titanium alloy (Ti6Al4V) in the rabbit.
The aim of this study was to evaluate the bone response to commercially pure titanium grade I and titanium alloy grade V (90% Ti, 6% Al, and 4% V, depicted Ti6Al4V) after 8 weeks in rabbit tibia. Interference microscopy and scanning electron microscopy were used for surface analyses. Transmission electron microscopy (TEM) was used for evaluation of surface crystallinity and chemistry after prep...
متن کاملELECTRODEPOSITION OF NANO SIZE HYDROXYAPATITE COATING ON TI ALLOY
A film of osteoconductive and biocompatible material on biomedical metallic implants can create bioactivity of the implant and shorten healing time. Hydroxyapatite, that is the most important mineral part of human bone, was coated on Ti6Al4V using cathodic electrode position process. Pulse electrode position technique was used and the effects of different parameters such as potential, duty cycl...
متن کاملOsseointegration of Ti6Al4V alloy implants coated with titanium nitride by a new method.
Coating titanium alloy implants with titanium nitride (TiN) by the method of Powder Immersion Reaction Assisted Coating (PIRAC) produces a stable layer on their surface. We have examined the ability of the new TiN coating to undergo osseointegration. We implanted TiN-coated and uncoated Ti6Al4V alloy pins into the femora of six-month-old female Wistar rats. SEM after two months showed a bone co...
متن کاملBone apposition to a titanium-zirconium alloy implant, as compared to two other titanium-containing implants.
Implants made of commercially pure titanium (cpTi) are widely and successfully used in dentistry. For certain indications, diameter-reduced Ti alloy implants with improved mechanical strength are highly desirable. The aim was to compare the osseointegration of titanium-zirconium (TiZr) and cpTi implants with a modified sandblasted and acid-etched (SLActive) surface and with a Ti6Al4V alloy that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 28 22 شماره
صفحات -
تاریخ انتشار 2007